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A direct method of minimization of the energy expression for closed and open shell systems in 
LCAO-MO density matrix formalism is presented. The method makes use of a unitary transformation 
acting directly on the density matrices. Expressions of the gradient and second energy derivatives are 
worked out. Some preliminary calculations to test the rate of minimization using a variable metric 
method have been made on H2S and SO molecules and have given satisfactory results. 
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1. Introduction 

Two main approaches can be distinguished to solve equations of the SCF 
theory. The former originates from the classical work of Hartree and Fock and 
consists in solving iteratively a system of variational equations as a pseudo- 
eigenvalue problem of a one-electron hamiltonian. The latter is based on a direct 
minimization of the energy expression. Among the approaches of this kind the 
one proposed by McWeeny [1] approximates the energy surface near a starting 
point by a linear variation of density matrices, made in such a way to satisfy the 
constraints, with a subsequent descent along the negative gradient direction. 

Recently, following the work of Fletcher [2], interest has been revived in direct 
methods of minimizing the energy with respect to orbital linear coefficients (or 
to other non-linear parameters  such as nuclear positions and orbital exponents) 
using one of the more modern conjugate-direction technique I-3]. The basic idea 
of this approach consists in the introduction of a matrix to incorporate and 
remove the constraints and of a matrix of unconstrained variables, with respect 
to which the minimization is performed. A drawback of this procedure seems to 
be that, due to the presence of redundant  variables, the Hessian matrix is not 
positive-definite, as it should be, but singular [4]. 

An alternative direct minimization approach,  which may be traced out to 
the paper by Raffenetti and Ruedenberg [5] (see also [6]), is based on the use of 
the constraints to remove variables from the problem. An expression of the energy 
in terms of independent variables can be achieved through a parametrization of 
an orthogonal matrix, which allows the maintenance of the orthogonality (or 
idempotency and exclusivity in the density matrix formalism) during all the 
iterative steps and so the iterative minimum seeking procedure is carried out 
directly on the energy surface. 
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In the line of the approach now mentioned, we propose here to use an ortho- 
gonal m x m matrix of the form (known as Cayley's formula) 

u ( x )  = - t  + 2(1 + x - 1, (1) 

depending on the m ( m -  1)/2 independent variables given by the elements of the 
skew-symmetric matrix S = X -  J~, X being a completely arbitrary (real) matrix. 
Introducing, for the sake of brevity, the definition 

e=l+x-J =l+s, (2) 

it is worth noting that the matrix P is never singular, due to the fact that all the 
non-zero characteristic roots of a real skew-symmetric matrix are imaginary 
(and hence unity cannot be one of these roots). The unitarity of U, that is 

c =fJv:l, 
is immediately shown observing that the matrices P and /~ commute, that is 
P f J = P P .  

The proposal is to employ this orthogonal matrix to transform the m dimen- 
sional atomic basis set, assumed to be orthonormal:  in this way a map is made of 
an orthonormal vector set into another orthonormal set, and the number of 
independent variables needed to do a transformation of this kind is just m(m - 1)/2. 

In this note we deal with a rather general energy expression for many-shells 
systems in terms of density matrices; the first and second energy derivatives with 
respect to the independent variables are worked out and applied to the direct 
minimization of the energy functional. In a subsequent note the method will be 
extended to a more general energy expression including configuration interaction. 

2. Theory 

A straightforward extension of the original McWeeny theory [1] to states 
requiring more than one determinant for configurations involving many shells 
leads to an energy expression which may be written as follows 

ns ns 

E = vi tr(fRi) + Y vii tr(Ri  ARj)) (3) 
i = l  i<=j 

In this expression i and j denote the shells, n S is the number of shells and v~ their 
fractional occupation number (0 < v i __< 2); R~ is the density matrix of the ith shell 
and vi~= v~U/(1 +~j) .  According to its definition, v~ may assume also fractional 
values to allow all the orbitals in a degenerate set to have the same occupation 
number, f denotes the matrix of one-electron integrals and G~j(R) the usual 
electron interaction matrix of elements 

m 

= 2 R j , , g  .... t, (4) [a, j(R)]rs '~ 
t ,u 

where the notation 
ij 

g .... t = a i j ( r u l s t ) - b i ~ ( r u l t s )  (5) 
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has been introduced for a combination of two-electron integrals on an atomic 
orbital basis of dimension m. The coefficients aij and bi~ are constants that couple 
the shells i and j; their values are determined by writing down explicitly Lhe energy 
expression that arises from the several Slater determinant wave function, as- 
sociated with the state of the system (appropriate spin and spatial symmetry). 
Due to the orthonormality requirement among the molecular orbitals, the 
hermitian matrices R i must be idempotent and mutually exclusive, that is, in an 
orthonormal basis, 

R! = g i ,  g~ = Ri,  R i Rj = ~ijRi ( i , j  = 1,... ns) (6) 

with traces having the integer values 

t r R  i = n i (i = 1 . . . .  ns) ,  (7) 

corresponding to the n i orbitals with occupation number v~ forming the shell i. 
Each density matrix R~ represents a projection operator defining a n~-dimensional 
subspace of the m-dimensional space spanned by the atomic orbitals. 

The energy expression (3) has to be minimized with respect to the linear 
coefficients of molecular orbitals under the constraints (6) and (7). Introducing 
an orthogonal matrix U ( X )  and starting with density matrices R i satisfying (6) 
and (7), the transformed matrices 

~ = t: (x) g~ ~ (x) (8) 

continue to be symmetric and to satisfy the conditions (6) and (7). Of course, in 
the presence of symmetry the matrix U ( X )  has the same block structure of the 
density matrices R~ and as a consequence the number of independent variables is 
accordingly decreased. Inserting the R~, the expression (3) of the energy becomes 

n s /I  s 

E ( X )  = ~,  v i tr(fl~i) + ~ vgj tr(i~Gi~(Rj) ) . (9) 
i = 1  i<~j 

At this point a brief digression is in order. It is worth noting that the matrix 
transformation (8) is equivalent to perform, by means of the matrix U, an 
orthogonal transformation on the atomic orbital basis, which, as said, is assumed 
to form an orthonormal set: the transformation induced on the density matrices 
is just given by (8), and the expression of the energy takes the form (9). However, 
from a more general point of view, it is easy to show that, given a density matrix R~, 
any other density matrix having the same trace can always be written in the form 
(8): for the sake of completeness, a proof is reported in the Appendix 1 (Part A). 

Taking for U ( X )  the formula (1), the expression (9) can be differentiated with 
respect to the arbitrary variables X in order to obtain the gradient. In this context 
the initial matrices R~ are regarded as fixed: they are the initial point on the 
energy surface from which to start the transformation (8). 

From the 

n s  n s  

6 E ( X )  = 2 ~ v i tr (Ri t ) f 6  U) + 2 ~, vgj[tr(R~/]Ggj(Rj)~ U) + tr(R il]G~j(Ri)6 U)] (10) 
i = 1  i<~j 



214 s, Polezzo 

and from the first order variation of U 

f i U = 2 f i p  -1 = _ 2 p - l  f iSp  -1 = 2p-1  fi~Tp -1 _ 2 p - l  f i X p  -1 , 

one obtains 

(11) 

Ils 

fiE(X) = 4 ~ v~ [tr(P-~Ri ( f f P - ~  fiX) - tr(P-~R, ( J f P - 1  fi X)] 
i = 1  

ns 

+ 4 ~ v~j[tr(P- ~R~ (JGi j (R)P  -~ fill) - tr(P -1R i (J G~i(Ri)P -~ fiX) (12) 
i<=j 

+ t r (P-  ~ R i U G~j(R~) P-~ fiX) - tr(P- 1Rj ¢5 a~j(~) p-1 fix)].  

Observing that P -  t = i~- ~ U and introducing the hamiltonian 

h~= v~ )  + ~ vjG~j(R)], (13) 
j = l  

the gradient G x with respect to the X variables is then given by the m x m skew- 
symmetric matrix 

G x = - 4 [ ~ - i [ i ~ = e h i R i - i ~  i R~hi] P - i (14) 

Hence the stationary conditions are given by (G x = 0) 

ns ns 

i=1  i = 1  

Due to the skew-symmetry of G x matrix these are m(m - 1)/'2 equations which, 
together with the conditions (6) and (7), completely determine the solution. As 
shown in Appendix 1 (Part B), the (15) are equivalent to the conditions at the 
minimum obtained by McWeeny [7]. Second derivatives are also easily obtained. 
For instance, starting from the coefficients of fi D under the trace operation in (10) 
and deriving their expression further, after a little manipulation the following 
expression is arrived at 

~2 E n~ 
- 2 ~ vifkmRin t 

OUm,~Ukl i=l 

+ 2  2 vii [6~j(R)]kmRi.l+ (RjU)~t(g,.,mk+ gtk, mu) (UR3.~ (16) 
i < j  t ,u  

+ [aij(R,)]k~.Rj. , + (g, IJ)nt(g~J mk ij t 
t,U ) 

For small variations, as it happens near the minimum, U (X) may be approxi- 
mated at first order as (k = - 2 )  

U(X) = 1 + k(X - X) (17) 
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and then the final expression for the second derivatives, in this approximation, 
is given by 

02E = k 2 (  ~2E 02E ~2E 02E ) 

~Xmn~Xkl ~Umn~Ukl ~Unm~Ukl ~Umn~Ulk ~- ~Unm~i[flk " 

These are the elements (kin, ln) of a supermatrix, which will be called Dxx. It is 
thought partitioned in the usual manner. The m x m matrix formed by the elements 
(m = k, n = 1), that is a2E/c3X21, of this supermatrix will be denoted by D x and 
called diagonal block for brevity; it is easily shown that D~ is a symmetric matrix 
with zeros along the main diagonal, as it must be. 

More general but, of course, more cumbersome expressions of second deriva- 
tives may be worked out without introducing the linear approximation (17) for 
U(X). This expression can be obtained deriving a second time the coefficients of 
6X under the trace operation of (12), as it is outlined in Appendix 4, but it has not 
been used in the preliminary test calculations reported below. 

3. The Process of  Minimization 

Equation (14), being the condition that E(X) is stationary with respect to the 
independent variables X, may be satisfied by direct minimization. When an 
energy minimum is reached all the gradient components must vanish: if so, 
approaching the extremum point the elements (Gx)rs of the gradient matrix 
diminish by absolute value. Taking the modulus mg of the gradient so defined 

m 9 = tr (G xc~x), 

remembering that mg= 0 if and only if G~ = 0, the vanishing of mg may be taken 
as a criterium to test if an extremum point is near. 

In a preliminary way we have tested three algorithms of minimization: a 
conjugate gradient, a steepest descent without second derivatives and a second 
derivatives algorithm, within the approximations mentioned above. Of course, 
the algorithms just mentioned constitute the third section of a general SCF 
computation program of which, the first section calculates the one- and two- 
electrons integrals and builds the necessary matrices, and the second section 
performs firstly the transformation over symmetry adapted orbitals and after 
their orthonormalization by the Schmidt method. 

Within the class of the conjugate gradient methods the choice was made to 
carry out a test using, mainly for its simplicity, the variable metric minimization 
algorithm proposed by Murtagh and Sargent [8]: for easy reference, in the 
Appendix 2 the necessary formulae are rewritten in the present notations. The 
iteration scheme for this algorithm (and for the others to be described) can be 
outlined as follows. Starting with some initial density matrices R i (for which, of 
course, the necessary conditions of idempotency, exclusivity and of traces are 
satisfied), with X = 0 (that is U = 1) and A o = 1, a preliminary research is performed 
in order to find a point X and a value of the constant ~ for which both the energy 
and m 0 are decreased with respect to the starting values. A new point X' is found 
along the prescriptions of the algorithm chosen, the corresponding new matrices 
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U'= U(X') and R'i = U'Ri U' are computed together with the associated gradient 
matrix G' x and the values of the energy E and of the modulus m o. The iteration is 
then repeated up to the prescribed precision, taking every time as new point to 
start from X' and the corresponding gradient G' x. The test of convergence is made 
on both the values of the energy decrement A E and of rag. 

The second algorithm tested for the minimization has been of a steepest 
descent type, in which the coordinate increments are given by 

~X= -2G~ ( 2 >0 ) ,  

with an expression for the step 2 worked out using the second order variation 
of the energy. For  instance, a partial contribution of second order variation (the 
complete expression should contain other terms, which have been omitted for 
the sake of simplicity) may be taken as 

ns ns 

8E~= ~ v~tr(cSURiSl)f)+ ~ v,j{tr[bURjcSUG~j(R)+cSUR/51)G,j(Rj)]}. 
i=i i<=] 

Substituting 8 U = 42 V, where V = P -  ~ G~P-~, in both the first and second order 
variations and equating to zero the derivative with respect to 2 of the expression 
of the total variation, one gets for the step 

20 - ml 
16m2 ' 

where 

m l = t r ( G x 0 x )  and 

t l  s I1 s 

m 2 = ~ v i tr(VR i V f)  + ~ vij {tr [VRj VGij(Ri) + VR~ I~G~j(Rj)]}. 
i - 1  i < = j  

The third algorithm of minimization tested makes a partial use of second 
derivatives. For  small variations of X the condition of minimum can be put into 
the form 

o + 8Xr~SXkz ]o Xr~= 0 (k, 1= 1,... m). 

An approximate version of this expression is obtained making use only of the 
block diagonal part D x of the second derivatives supermatrix, so that the co- 
ordinate increments may be approximated by 

x k , = -  . . . .  m) .  

In processes of iteration, like those described, the inverse I of the matrix P 
need not be computed directly, but it may be obtained as the limit of the succession 
given by the recursion formula 

L+~ = In - 2 '~3"(PL - 1). (18) 
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As shown in Appendix 3, it is worked out using the steepest descent method. It 
has proved to be rapidly convergent, with the constant 2 c fixed equal to 0.5. 

4. Preliminary Numerical Results 

Some test calculations have been made on the molecules HzS (1A 1 state) and 
SO (3S- state). For  HzS the following Slater type basis was used: lsn(1.2 ), 
ls(15.5409), 2s(5.3144), 3s(2.1223), 2p(5.9885), 3p(1.8273), 3d(1.6), with geometry 
SH=2.5427  a.u. and H S H =  119o48 '. For  SO the basis on S was: ls(15.5409), 
2s(5.3144), 2p(5.9885), 3s(2.1223), 3p(1.8273), 3d(1.4), on O: ls(7.6579), 2s(2.2458), 
2p(2.30); the distance 3.40 a.u. These values (choosen only for the reason of having 
the corresponding integrals already computed) are taken from other calculations 
on minimization of expression (3) performed along the method of McWeeny 
(asymmetrical case) [-1], with minor improvements [9]. All the calculations have 
been performed in single precision. 

The algorithm tested more extensively is that of Murtagh and Sargent. The 
convergence rate is rather satisfactory, but, as expected, it becomes low near the 
minimum. Introducing a scale factor s o to multiply the coordinates X improves 
the convergence significantly, s o may be regarded as a kind of mean value of 
second derivatives, buth with such a constant scale factor at a certain iteration 
a divergence may arise because the descent step can turn into an ascent one: when 
this happens the initial value of s o (1.2, say) is decreased down to its normal value 
s o = 1.0. The convergence rate may also be improved by a proper choice of the 
parameter  ~, still keeping its value constant during a number  of iterations. Table 1 
illustrates these point for HzS. The initial density matrix is obtained diagonalizing 
the core matrix and the energy associated is therefore the core energy. The values 

Table 1. Minimization test for H2S (IA 1 state) 

Iteration c~ So Energy (a.u.) rng 

0 0.0035 1.2 -396.080 86.3349 
9 0.0035 1.0 -397.692 8.99128 

62 0.0025 1.0 -397.784 5.66869 
89 0.0085 1.0 -397.798 1.05417 

108 -397.803 0.586050 
0 0.0070 1.0 -397.743 14.3395 

31 -397.814 0.369735 

Table 2. Minimization test for SO(3S - state) 

Iteration ~ So Energy (a.u.) mg 

0 0.0035 1.1 -469.136 95.5178 
13 0.030 1.0 -470.904 39.4416 
32 0.0065 1.0 -471.112 1.29219 
54 -471.133 0.578250 
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reported are only representative of an average behaviour: for instance, the rate 
of convergence between the 10 th and 88 th iterations may well be improved by 
changing the value of ~, as it is shown in the second part of the table, where a 
different initial density matrix has been choosen. The same points are illustated 
in Table 2 for SO: here also the starting was taken deliberately far away 
diagonalizing the core matrix. In all the calculations the procedure has been 
found stable, even when working on the 7 th significant figure. 

To make a comparison, the rate of convergence of McWeeny procedure is 
by far lower and the minimum is attained at - 397.787 a.u. for H2S and at - 471.125 
a.u. for SO: numerical errors affect the 6 th significant figure. 

The other two algorithms tested have been the steepest descent and the second 
derivatives, along the formulation presented above. For both the rate of con- 
vergence has been found somewhat lower than in the preceding calculations. 
In particular, the rate obtained using the second derivatives according to the 
approximation described above does not seem to justify the necessary greater 
amount of computation, but this conclusion is by no means definitive because a 
systematic test on the use of second energy derivatives has still to be made, deserv- 
ing a more careful investigation. 

5. Conclusions 

Our trial calculations have shown that the proposed method of incorporating 
constraints works rather satisfactory, but it seems worthwhile looking for minimi- 
zation algorithms to speed up its rate of convergence particularly in the final 
stages. Perhaps it may be worth resorting to a systematic use of second derivatives. 

But in this connexion some remarks are in order. It is to point out that within 
a minimization approach based on algorithms of the conjugate gradient type 
some difficulties of convergence are met [4], due to the possible singularity of 
the Hessian matrix, related to the presence of redundant variables. In the method 
presented in this paper the orthogonal transformation of the atomic basis requires 
just m ( m -  1)/2 variables and it seems likely that on the basis provided by these 
variables (i.e. the parameters X - )~ of the orthogonal transformation) the Hessian 
should be free of singularities, because no redundant variable is present. Never- 
theless, the energy is still invariant against a unitary transformation of the 
molecular orbitals of each shell, so that one is faced with the problem to remove 
this freedom reducing the number of the variables to the minimum just required 
[6] and to cast the method in terms of these variables. 

Appendix 1 

A. We wish to show that a density matrix can always be expressed in the form (8). Every m x m 
density matrix R, due to its idempotency, may be written as R = T T t, T being a m x m o matrix (that 
relates the mo occupied molecular orbitals to the m atomic orbital basis) for which T* T = 1,~o. Introduc- 
ing the m x m unitary matrix U o whose first m o columns are given by T and the m × m matrix W formed 
by the m o dimensional unit matrix lmo and null elements elsewhere, one has 

R=TTt=UoWU*o and W=U~oRUo. 
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Then, transforming by a new unitary matrix U 1 completes the proof, namely 

~= u1 wu*,  = u ,  u ; R V o U I  = U R W  , 

where U = U 1 Uto is a unitary matrix 1 
B. In this section the equivalence of stationary conditions (15) with those of McWeeny method 

is shown. The min i mum conditions obtained in I-7] may be generalized as follows 

(a) R ' h i R i = O ( i =  1 . . . .  n~), where R ' =  1 - ~ R k. 
k = l  

(b) R j ( h l - h j ) R ~ = O ( i ~ j , i , j =  1 . . . .  ns). 

From these the conditions (15) may  be obtained and reciprocally. From (a), summing over i and 
then subtracting from the equation so obtained its transpose one arrives at 

h~R~- ~ R~h~- ~, Rj(h i h j )R~=O. 
i = 1 i =  1 i , j ( i ~ j )  

Hence, taking into account (b) the (15) is obtained. 
F rom the (15), multiplying by R' from the left (remembering that  R'R i = O, i=  1, ... n~) and then 

by Rj from the right one gets (a) R ' h j R i =  O. Again, multiplying (15) by R~ from the left and then by 
R k from the right one obtains (b) Rl(hk -- hi) R k = O. 

Appendix 2 

The algorithm of the variable metric method of minimization proposed by Murtagh and Sargent 
I-8] and its main features are summarized hereafter. The improved coordinates Xn+l are generated by 
the recursion formula 

X,+ 1 = X ,  - ctnAn Gx. , 

where ct~ is a positive constant  with values in the range 0 < ct n < 1. The matrix A n is initially set equal 
to the identity matrix (A0 = 1) and is updated by the formula 

An = A . -  I + Z~2n/C n, 
where 

Z n = A . - l [ ( 1 - ~ n _ l ) G x ~ _ t - G x ~ ] ,  c . = t r [ ( G x n - G ~ , _ l ) Z  J . 

To ensure stability the matrix A. mus t  be and remain positive definite: a simple test for this to occur is 

b J c , < O  where bn=tr (Z. .G~,_l ) .  

In case A n becomes indefinite, it is set equal to the identity matrix. The method is quadratically conver- 
gent even if ~, is arbitrarily choosen and kept constant  during all the process. The initial choice for ct 
may be performed starting from, say, s 0 = 0.01 and halfing down to a value which gives an energy 
and a gradient modulus  less than the initial ones. An initial guess for ct may be given by 

0 < o: < (E n - E,_  1)/[e tr (G~n An G~,)], 

where e is a positive arbitrary constant  < 1. It is shown in that if b. > 0 for ~ = 1, then the function 
has a min imum in the range 0 < ct, < 1. Other details are presented in the original paper. 

Appendix 3 

The inverse I = P -  i of a non singular matrix P [in our case it is given by (2)1 may be constructed 
iteratively by the steepest descent method. Let I o a matrix which is only roughly equal to P -  1. We seek 
a matrix 610 such that I o + 5I  0 is more nearly equal to P -1 :  the best possible choice of 610 can be 
obtained by a steepest descent method,  being only necessary to reduce to zero the quanti ty 

f2 = tr [ (el0 - 1) (P1o - 1)]. 

1 The author  is indebted to Prof. E. Gianinetti  for this proof. 



220 S. Polezzo 

The variation (iD induced by a variation 51 o of I 0 is given by a sum of a first and second order contribu- 
tions. In first order 

( iDo=t r (B6Io) ,  where B = 2 P ( P I o - I  ). 

To reduce D most  rapidly we therefore choose a step of length 2 in the direction of steepest descent, 
that is 

6 1 o = - ) . B  ( 2 > 0 ) .  

Taking now into account the second order contribution to 5D, 2 is given by 

86D 
= 0 = - tr (B/}) + 22tr  (PB/~/~), 

82 
hence 

1 tr(B/~) 
~ - (:~ > o). 

2 t r ( P B B P )  

From this one is lead to the simple iteration formula 

I,+ 1 = I ,  - 2)~f f (P l ,  - 1),  

which gives a sequence I0,11, I2. . .  of increasingly good approximations to P -* .  For the cases at hand, 
a constant  value of 2~ = 0.5 has proved to give a very rapid convergence: in general no more than one 
or two iterations are needed. 

Appendix 4 

In this appendix the main steps for the derivation of a general expression of the second derivatives 
(?2E/OXm, OXk~ are outlined. Their expression is worked out  as a sum of all the contributions given by 
the coefficients of (iX,,, in the matrix elements ((iGx)k~ obtained differentiating the kl element of the 
gradient matrix (14). These contributions arise from terms of two kinds, tipically of the form 

(A(IXB)k ~ and [ Z 2 ( ~ ¢ ( 1  × 0 X ) ) ] k l ,  

where A and B are two matrices and ~ is a supermatrix (of dimensions m 2 x m2); the notat ion x for 
the direct (Kronecker) product  has been introduced for brevity in order to obtain a final expression 
in a compact  form. The simbol Zz (cg) represents the operation of contraction made on a supermatrix cd 
and it is defined as the matrix of elements 

[z2 (~)3 rs = Z % ..... 
t 

It borns out because the matrix G~i(R ) may be written as 

G,j(R) = z2 [(t  × R) CJ] ,  

g ij being the supermatrix of elements given by the combination (5) of molecular two-electron integrals. 
It is easy to see that  the coefficients of (iX, . ,  arising from the preceeding two differential forms are 

respectively given by 

Ak,,B,t = (A x B)k,,,, a and agk,,l,,. 

Defined the three supermatrices N, .# ,  and ~ as follows: 

= (i0-1 x i) [(I x P *) (1 x C) - (C x 1) (P -  1 x 1)] (1 x P -  !), 
where 

where 

C= ~ hi-~ i- ~ Rihl, 
i=1 i = i  

= (P-~ × P-~)  ~_E [(1 × ~ ) ~ -  ~ ( ~  × t)] (p-~ × i ~-~) 

~ = (h~ x 1) + (1 × h~), 
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and 

221 

In± } , ~ = ( e - t  x e - 1 )  v l v j [ ( R i x l ) f i J - f l J ( E i x l ) ]  ( e - l x e - 1 )  

where 
f , i  = (1 x Ri) 9 'i - gii( 1 × RJ) , 

the final expression may be put into the form 

~2E 
c~Xm" OXkl 4(~kn,ml -- (~km,,l) + 8 (d/lkm,, t -- J/kn,mt q- ~km,t ,  -- 2 in ,  tin)" 

From the differential of (14) it is easy to see that the elements of ~ come from the differential terms 
associated with 6 P - 1  and 6P-1, those of dg from (61~)h~ (and their transpose) and those of ~ from 
R i a h i  (and their transpose). 
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